Ultrasound-assisted CO2 flooding to improve oil recovery.
نویسندگان
چکیده
CO2 flooding process as a common enhanced oil recovery method may suffer from interface instability due to fingering and gravity override, therefore, in this study a method to improve the performance of CO2 flooding through an integrated ultraosund-CO2 flooding process is presented. Ultrasonic waves can deliver energy from a generator to oil and affect its properties such as internal energy and viscosity. Thus, a series of CO2 flooding experiments in the presence of ultrasonic waves were performed for controlled and uncontrolled temperature conditions. Results indicate that oil recovery was improved by using ultrasound-assisted CO2 flooding compared to conventional CO2 flooding. However, the changes were more pronounced for uncontrolled temperature conditions of ultrasound-assisted CO2 flooding. It was found that ultrasonic waves create a more stable interface between displacing and displaced fluids that could be due to the reductions in viscosity, capillary pressure and interfacial tension. In addition, higher CO2 injection rates, increases the recovery factor in all the experiments which highlights the importance of injection rate as another factor on reduction of the fingering effects and improvement of the sweep efficiency.
منابع مشابه
A Study on the Mechanism of Urea-assisted Steam Flooding in Heavy Oil Reservoirs
The Biqian-10 block, located in Henan Oilfield of Sinopic, contains many thin and interbedded reservoirs, which have been operated by cyclic steam stimulation for 20 years or more. Therefore, it is a challenge to implement the conventional steam flooding. In order to improve the recovery of steam flooding, urea was used to assist steam flooding. Urea can decompose into CO2 and NH3, which are be...
متن کاملRESEARCH ON CO2 FLOODING FOR IMPROVED OIL RECOVERY IN WATER FLOODING ABANDONED RESERVOIRS
CO2 injection is an effective technique for improved oil recovery in light oil reservoirs, especially for water flooding abandoned reservoirs. In this study, the lower part of Es1 reservoirs in Pucheng oilfield was introduced as the target reservoir. By studying the minimum miscible pressure in CO2 flooding, the reservoir could achieve miscible flooding. Long core displacement experiments prove...
متن کاملUsing Polymers to Improve CO2 Flooding in the North Burbank Unit
The North Burbank Unit, located in Osage County, was originally discovered in 1920. It has an extensive history of activity, including primary depletion, produced gas cycling, and water and polymer flooding to the point of very high water cut at current conditions. The current oil production rate in the North Burbank Unit is approximately 1,400 BOPD from 360 active wells at a water cut of 99.5%...
متن کاملA new investigation on modeling of permeability reduction during CO2 flooding processes in sandstone oil reservoirs
Permeability reduction in oil reservoirs during primary oil recovery and using the enhanced oil recovery methods are complicated problem which most of the oil field in worlds has encountered. In this work, a modified model based on four phase black oil model (oil, water, gas, and asphaltene) was developed to account permeability reduction during CO2 flooding in cylindrical coordinates around a ...
متن کاملCARBON DIOXIDE MINIMUM MISCIBILITY PRESSURE ESTIMATION (CASE STUDY)
Carbon dioxide flooding is considered to be one of the most effective enhanced oil recovery methods for the light oil reservoirs. Depending on the operating pressure, the process might be miscible or immiscible. Minimum miscibility pressure (MMP) is the most important parameter for assessing the applicability of any miscible gas flood for an oil reservoir. The miscibility condition is determine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics sonochemistry
دوره 35 Pt A شماره
صفحات -
تاریخ انتشار 2017